Méthodologie : Raisonner par étapes

    img

    Un peu de Théorie

    Règles de passage

    ① Binôme Addition-Soustraction

    img

    Si vous êtes dans la configuration suivante : - 5 + x = 8, réagencez alors le membre de gauche : x - 5 = 8, et vous pourrez appliquer simplement la règle décrite ci-dessus.

     

    ② Binôme Division-Multiplication

    img

    ↬ Lorsque vous multiplier à droite et à gauche par un facteur, mettez des parenthèses aux membres de droite et de gauche, ainsi qu'à votre facteur.

    Exemple   1 + x = 2 x-1 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf - 1       ⇢    ⚠ il serait faux d'écrire 1 + x( x - 1 ) = 2 - 1
                 Pour éviter cette erreur, on met des parenthèses au membre de gauche et de droite :
                 ⇔  ( 1 + x ) = ( 2 x-1 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf - 1 )
                 Puis on multiplie tout le membre de gauche et de droite par ( x - 1 ) :
                 ⇔  ( 1 + x ) ( x - 1 ) = ( 2 x-1 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf - 1 ) ( x - 1 )
                 ⇔  x² - 1 = 2 x-1 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf ( x - 1 ) - ( x - 1 )
                 On simplifie par ( x - 1 ) la fraction :
                 ⇔  x² - 1 = 2 - ( x - 1 )
                 Enfin on enlève les parenthèses, le "-" qui est devant va changer le signe des termes à l'intérieur :
                 ⇔  x² - 1 = 2 - x + 1
                 ⇔  x² + x - 4 = 0
    ⇢ Nous identifions alors une équation composée de x et de x², il faut donc appliquer la méthode du discriminant.

    ⚠ Les élèves bloquent souvent avec l'équation - x = 2, tout simplement elle est équivalente à x = - 2
     

    Equation Classique avec "un seul type de x"

    Le terme "un seul type de x" fait référence à une (et seulement une) configuration possible de x dans l'équation, en voici quelques unes :

    ↬ Configuration en x :             - 2 + x = 2x - 5

    ↬ Configuration en x² :           - 4x² = 4x² - 1

    ↬ Configuration en x MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf :        1 + 2 x MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf = 5 - x MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf

    ↬ Configuration en x 3 MMF.7h]X3`00QEMOLm|f3?l4n*inE)hD7l4o8]Dgae(cgf8iIj_]7_bRMU[VFf9gR[)UcNFkSb0Y2G8U=diRo00*a0l4HGVkb=n_e|]I|ESU5jlGfoTjVaF[MK*|Sgl]bo_MUlUMEClMm^G3i==^?oWGC3Vo_=PFRn8fRk9oW|_Sk[2o0Z_jV:dg=TRThTTBCiSEo38[|PPPWX2)9ib1E*)l0oI)XSGkoNif]|RSbh^gRndV:hY5OX(IK3KiK9U57ijZN[:YS|OMo]ij?adS5RnGlfYoO:joiMEoOP^[QV4e?e5c[aJMN_G`adeMEGng=SUT2n7DBCS`jVAhLadG^lOZJF9eToGQ|Mbg5Q??3loecW:So^VX?hba7Z4=8kcQ774haaa6Z((8MaPW3l?|HI`n?jDO=^MSYci2WinScloAib?dn*Qm?TjO3m?WhoC5b)V;4O[RU;kCOkMGQlO0_*`aa2[X[CHFb|_2bR03T1KXh:C*`8(Q*D)*=HUTd2T98;G01=Tf((AnmML8INI5C0)2c8T;YZ6VaP=(0h91]C]oMETdNVfi|JT8b3S4`oZDK)8BD*d0TPW7jP*I]iLR05N5JHP(V40S9c*`eP54Pk0BB*?BGW:LDM8T1HhEB1|P23])Bl0EFD9Ch;[;SI_nW[*6PRHPP1A4^3=XP6P?d099CdOePX^TfeMX*U`H6S|U*=8D9:IP*P392EDYZ9^T`:LP6dM(hJXeQViXn|L*8S8UA1BS[DGCD9Q6F:oXDBR9OM:dPg;GXV6U4]X32[?P*CI4C[])BaRABB|T_2]Y*X^*^)dKX;ZXBD8RhB689Xo4)(H=B[]M=;d(VSJ29_][g3mL1ReMIGE0RRi1l|fNV[BRa_eUT5dOQY*=KRm2;4)g=kh?6bBXRCJRlEg*X:BSIS21ZgHN6699^mABAVABoYBC7E?AECJEY;eCA*hVCNPBCCXV=ABTi8H1HkgI`Z0?NFm`2C9iV:A0M*L4[3NDV)hQ*l|5S3*R0)_INZ(Ag61ZCL:E]SGjJmU2AALV5)QHMP2;L]F6k5G53LSfm(6=B=h0CX6k6*fP9G4cT[N8WPfh(FUJA5X3);TL8)SWU1^CkH01*Nh7f479)TOGWdf6HE:Ze[Eg)ViH]XEddk93KDU^IWOf8i?5;^eHf7N?o9iX1HOjE_|:E]M5cTkO8ER5GFF2gXCoaTdn]4XKD*B;HnV`25KU=3nlPSEaFHaUYE^[MUKM|iZcJm?ceOQ9|*2?I33[mFYEA6aZka)K9_H?D;1=IUG^Ln7aci)_7eh70c[nhl)T=hP1ih4WCfo0YliIGAn27ci|G^ofIOg=HfeaG]fGalYSHo6jNW3Oa[`V]IZ?IKd[?cmD?6B;5;;SUh0`nNcUF9L1Lk;ROM290IdLd:TCGOUP6N1SQ;gAa_gJCnH0[(bLk930UR[[W[]4]C|KE(SP:C68MIkO[^eQi8OjdGhY;JZGHnQ?oh8YLadnGmf^C_g|JKZO0L4^|h^^Og?1[KCi|8b`K8^lR33Li]OEYn_I9T?S6dK?Rb`_l?_ZmN]f7[eLKZfO_WceD5bn_KeI_ol1f954k*.mmf :           5 + x 3 MMF.7h]X3`00QEMOLm|f3?l4n*inE)hD7l4o8]Dgae(cgf8iIj_]7_bRMU[VFf9gR[)UcNFkSb0Y2G8U=diRo00*a0l4HGVkb=n_e|]I|ESU5jlGfoTjVaF[MK*|Sgl]bo_MUlUMEClMm^G3i==^?oWGC3Vo_=PFRn8fRk9oW|_Sk[2o0Z_jV:dg=TRThTTBCiSEo38[|PPPWX2)9ib1E*)l0oI)XSGkoNif]|RSbh^gRndV:hY5OX(IK3KiK9U57ijZN[:YS|OMo]ij?adS5RnGlfYoO:joiMEoOP^[QV4e?e5c[aJMN_G`adeMEGng=SUT2n7DBCS`jVAhLadG^lOZJF9eToGQ|Mbg5Q??3loecW:So^VX?hba7Z4=8kcQ774haaa6Z((8MaPW3l?|HI`n?jDO=^MSYci2WinScloAib?dn*Qm?TjO3m?WhoC5b)V;4O[RU;kCOkMGQlO0_*`aa2[X[CHFb|_2bR03T1KXh:C*`8(Q*D)*=HUTd2T98;G01=Tf((AnmML8INI5C0)2c8T;YZ6VaP=(0h91]C]oMETdNVfi|JT8b3S4`oZDK)8BD*d0TPW7jP*I]iLR05N5JHP(V40S9c*`eP54Pk0BB*?BGW:LDM8T1HhEB1|P23])Bl0EFD9Ch;[;SI_nW[*6PRHPP1A4^3=XP6P?d099CdOePX^TfeMX*U`H6S|U*=8D9:IP*P392EDYZ9^T`:LP6dM(hJXeQViXn|L*8S8UA1BS[DGCD9Q6F:oXDBR9OM:dPg;GXV6U4]X32[?P*CI4C[])BaRABB|T_2]Y*X^*^)dKX;ZXBD8RhB689Xo4)(H=B[]M=;d(VSJ29_][g3mL1ReMIGE0RRi1l|fNV[BRa_eUT5dOQY*=KRm2;4)g=kh?6bBXRCJRlEg*X:BSIS21ZgHN6699^mABAVABoYBC7E?AECJEY;eCA*hVCNPBCCXV=ABTi8H1HkgI`Z0?NFm`2C9iV:A0M*L4[3NDV)hQ*l|5S3*R0)_INZ(Ag61ZCL:E]SGjJmU2AALV5)QHMP2;L]F6k5G53LSfm(6=B=h0CX6k6*fP9G4cT[N8WPfh(FUJA5X3);TL8)SWU1^CkH01*Nh7f479)TOGWdf6HE:Ze[Eg)ViH]XEddk93KDU^IWOf8i?5;^eHf7N?o9iX1HOjE_|:E]M5cTkO8ER5GFF2gXCoaTdn]4XKD*B;HnV`25KU=3nlPSEaFHaUYE^[MUKM|iZcJm?ceOQ9|*2?I33[mFYEA6aZka)K9_H?D;1=IUG^Ln7aci)_7eh70c[nhl)T=hP1ih4WCfo0YliIGAn27ci|G^ofIOg=HfeaG]fGalYSHo6jNW3Oa[`V]IZ?IKd[?cmD?6B;5;;SUh0`nNcUF9L1Lk;ROM290IdLd:TCGOUP6N1SQ;gAa_gJCnH0[(bLk930UR[[W[]4]C|KE(SP:C68MIkO[^eQi8OjdGhY;JZGHnQ?oh8YLadnGmf^C_g|JKZO0L4^|h^^Og?1[KCi|8b`K8^lR33Li]OEYn_I9T?S6dK?Rb`_l?_ZmN]f7[eLKZfO_WceD5bn_KeI_ol1f954k*.mmf = x 3 MMF.7h]X3`00QEMOLm|f3?l4n*inE)hD7l4o8]Dgae(cgf8iIj_]7_bRMU[VFf9gR[)UcNFkSb0Y2G8U=diRo00*a0l4HGVkb=n_e|]I|ESU5jlGfoTjVaF[MK*|Sgl]bo_MUlUMEClMm^G3i==^?oWGC3Vo_=PFRn8fRk9oW|_Sk[2o0Z_jV:dg=TRThTTBCiSEo38[|PPPWX2)9ib1E*)l0oI)XSGkoNif]|RSbh^gRndV:hY5OX(IK3KiK9U57ijZN[:YS|OMo]ij?adS5RnGlfYoO:joiMEoOP^[QV4e?e5c[aJMN_G`adeMEGng=SUT2n7DBCS`jVAhLadG^lOZJF9eToGQ|Mbg5Q??3loecW:So^VX?hba7Z4=8kcQ774haaa6Z((8MaPW3l?|HI`n?jDO=^MSYci2WinScloAib?dn*Qm?TjO3m?WhoC5b)V;4O[RU;kCOkMGQlO0_*`aa2[X[CHFb|_2bR03T1KXh:C*`8(Q*D)*=HUTd2T98;G01=Tf((AnmML8INI5C0)2c8T;YZ6VaP=(0h91]C]oMETdNVfi|JT8b3S4`oZDK)8BD*d0TPW7jP*I]iLR05N5JHP(V40S9c*`eP54Pk0BB*?BGW:LDM8T1HhEB1|P23])Bl0EFD9Ch;[;SI_nW[*6PRHPP1A4^3=XP6P?d099CdOePX^TfeMX*U`H6S|U*=8D9:IP*P392EDYZ9^T`:LP6dM(hJXeQViXn|L*8S8UA1BS[DGCD9Q6F:oXDBR9OM:dPg;GXV6U4]X32[?P*CI4C[])BaRABB|T_2]Y*X^*^)dKX;ZXBD8RhB689Xo4)(H=B[]M=;d(VSJ29_][g3mL1ReMIGE0RRi1l|fNV[BRa_eUT5dOQY*=KRm2;4)g=kh?6bBXRCJRlEg*X:BSIS21ZgHN6699^mABAVABoYBC7E?AECJEY;eCA*hVCNPBCCXV=ABTi8H1HkgI`Z0?NFm`2C9iV:A0M*L4[3NDV)hQ*l|5S3*R0)_INZ(Ag61ZCL:E]SGjJmU2AALV5)QHMP2;L]F6k5G53LSfm(6=B=h0CX6k6*fP9G4cT[N8WPfh(FUJA5X3);TL8)SWU1^CkH01*Nh7f479)TOGWdf6HE:Ze[Eg)ViH]XEddk93KDU^IWOf8i?5;^eHf7N?o9iX1HOjE_|:E]M5cTkO8ER5GFF2gXCoaTdn]4XKD*B;HnV`25KU=3nlPSEaFHaUYE^[MUKM|iZcJm?ceOQ9|*2?I33[mFYEA6aZka)K9_H?D;1=IUG^Ln7aci)_7eh70c[nhl)T=hP1ih4WCfo0YliIGAn27ci|G^ofIOg=HfeaG]fGalYSHo6jNW3Oa[`V]IZ?IKd[?cmD?6B;5;;SUh0`nNcUF9L1Lk;ROM290IdLd:TCGOUP6N1SQ;gAa_gJCnH0[(bLk930UR[[W[]4]C|KE(SP:C68MIkO[^eQi8OjdGhY;JZGHnQ?oh8YLadnGmf^C_g|JKZO0L4^|h^^Og?1[KCi|8b`K8^lR33Li]OEYn_I9T?S6dK?Rb`_l?_ZmN]f7[eLKZfO_WceD5bn_KeI_ol1f954k*.mmf

    etc...

    MMF.7h_H3`00QEMOLn963?l4n*hlVQV7FNdOko[N2?FUC0=T`9O[0bo^eDfI9W0UG7]gVGcgB^^e;G(f3*WACm9ZmM=ZQMW)UnmGjlDdWjnFEjmGfmTjVnJ[MK*XCWl^R|OMYm5mNG`ik8^WdLOMO_B?VdPi_][Vlo`^Rk:o_aBWgF5o3JQjb=HK31:IN9C48h6JWjIi5P748obE0U0;lYfakaBiIkoNgdgWbfQlmGJegFAi?UoNDP:KcG:jb:8?;nEa]2U?Ymgn4KeOCY685h]I^Cmm)GiKU_mF)j0Jn]GbC2d[]F[EZjOOKhmUnEMSdgff4(jLQH=:WOA_K^=lmebnS50gFQnNRgeSLO7|l)Fh*fkL?agdQb7F0kAQP3ML8PjGV((0MASP3|?TXIlm3=)GioC3iW;Xe0OXbd_diBGjLX2n7:0_QnW;O_YbV;hJ)7de*5nMdoOjkgQeI0bbTR66f0*mJV=U:UVQ33X0SL069d(66*`96H9|FBA7CTT0:*8GI6aPR:_EWb)BABEB6Q1TbE`X3C=a5J0d81Q(|o=WWdF]]lQ=C5A0cR(IeZM|4in8Z*6`C2AE9lRd_EH1n2Y(*VBP16XihH6Y3Z1ZA9E8JY1fTY)2TfHYB:Y0FP?5f4UN0VWH4Yj2]6e^dWGgi3E*?045[23:Wd4=E7)023*o7M(9[Y9fGfDILNEhk9*1cE?*U88;0KATE;GRKYZ3:PEM)e8:ehdaM4?M?hhAdBTSHPA_;Ij6XCC2N|)?`VSZTkXMS;lF=B^Cl1h`U8D(|V=bfWIJ8YS(FR6AKDTCGXC4Kel3ddI=4QJ93T7ENBC)(jiAf^iRnFF`_14|fmoBo^4bF)d[J`(bO0VA[oNd[1D]kJn3k?|`Y)aXNaER)KjmZoZ`AXZKN2)jZP]ZU;CD72E`gL`3abaYVeXZV(c:WdZfHj[JbZJJ]GMZf(6T2EmRFLNTSX)DgC0*XS=K17BQk0`^aBJ?d1bHmX10M8JB|1gTN;U0|4H441eKIcB27db=BOWB=|KZFSK*l8D91cKF;J2RG3LQ)eGa0k8iOO0SD]I0L^1_APehBOb(U0gRI`=nC;X6|MH0bBh7:?hiiLMT(f10|O|1)2Q5jnSk|lh`C4[C^7I)a`o;YY1nF[JX:LW]m1ho(TG|dhhEoZm*]BMI`J)^5Eo1j[_8foUo25J5Zec*^o3^o)*SZlJ8:UPlBhmE|1Z_nN4E[8W?HRP[feR]]mZ)eEeLVej^a_lD2nQ8N[=N[eIi92IhWl*T`ClP0I|(EOichOV?|jlOU*ijM?;7QlW:X7ZLNihl:`(mMDj?ad?`XhO=Vmfn)7j[|4Fl;1n;DeUQQgQM?_T_HiDVALe3LM`E_cfE(VA;5;;CYh0XnNc[jEP4;=V:md6WNWBjAfO)M(DC(Z372;cAc_oR9g(0:0|_NjBXYHYSaefCfYl=:GC`e1*4WFMgJcb(iN7hS=m9lo;[:OAWmH:9l1dnFmf]c_g`=?e?Sh3;L=7=;chhBY|?RhS:=UoV4HGKo;cjN3?MI6AlXnS;?5_Vm7geiWFKd`?fn9G46CiSRO5fPeMTS)248Sj20LT`O]|nA6Z(Ka[5cR8P?fEM]NK(3fc]9U7aeW[jEN0|bF;lQXWm1e*Tbf`.mmf    x = 2 x MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf - 1     n'est pas une configuration en x car il y a à la fois du x et du 1 x MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf . Arrangez-vous alors pour ne plus avoir de x au dénominateur, en multipliant tout le membre de droite et de gauche par x.
     

    Pour résoudre ce type d'équation, vous devez isoler à gauche votre terme en x en suivant rigoureusement les règles de passage. Puis, vous devez effectuer les étapes nécessaires pour obtenir un x au numérateur et "vierge" de toutes racines carrées, puissances, etc...

     

    Equation Polynomiale avec du x et du x²

    Contrairement au paragraphe précédent, cette partie étudie les équations composées à la fois de x et de x².

    MMF.7h_H3`00QEMOLn963?l4n*hlVQV7FNdOko[N2?FUC0=T`9O[0bo^eDfI9W0UG7]gVGcgB^^e;G(f3*WACm9ZmM=ZQMW)UnmGjlDdWjnFEjmGfmTjVnJ[MK*XCWl^R|OMYm5mNG`ik8^WdLOMO_B?VdPi_][Vlo`^Rk:o_aBWgF5o3JQjb=HK31:IN9C48h6JWjIi5P748obE0U0;lYfakaBiIkoNgdgWbfQlmGJegFAi?UoNDP:KcG:jb:8?;nEa]2U?Ymgn4KeOCY685h]I^Cmm)GiKU_mF)j0Jn]GbC2d[]F[EZjOOKhmUnEMSdgff4(jLQH=:WOA_K^=lmebnS50gFQnNRgeSLO7|l)Fh*fkL?agdQb7F0kAQP3ML8PjGV((0MASP3|?TXIlm3=)GioC3iW;Xe0OXbd_diBGjLX2n7:0_QnW;O_YbV;hJ)7de*5nMdoOjkgQeI0bbTR66f0*mJV=U:UVQ33X0SL069d(66*`96H9|FBA7CTT0:*8GI6aPR:_EWb)BABEB6Q1TbE`X3C=a5J0d81Q(|o=WWdF]]lQ=C5A0cR(IeZM|4in8Z*6`C2AE9lRd_EH1n2Y(*VBP16XihH6Y3Z1ZA9E8JY1fTY)2TfHYB:Y0FP?5f4UN0VWH4Yj2]6e^dWGgi3E*?045[23:Wd4=E7)023*o7M(9[Y9fGfDILNEhk9*1cE?*U88;0KATE;GRKYZ3:PEM)e8:ehdaM4?M?hhAdBTSHPA_;Ij6XCC2N|)?`VSZTkXMS;lF=B^Cl1h`U8D(|V=bfWIJ8YS(FR6AKDTCGXC4Kel3ddI=4QJ93T7ENBC)(jiAf^iRnFF`_14|fmoBo^4bF)d[J`(bO0VA[oNd[1D]kJn3k?|`Y)aXNaER)KjmZoZ`AXZKN2)jZP]ZU;CD72E`gL`3abaYVeXZV(c:WdZfHj[JbZJJ]GMZf(6T2EmRFLNTSX)DgC0*XS=K17BQk0`^aBJ?d1bHmX10M8JB|1gTN;U0|4H441eKIcB27db=BOWB=|KZFSK*l8D91cKF;J2RG3LQ)eGa0k8iOO0SD]I0L^1_APehBOb(U0gRI`=nC;X6|MH0bBh7:?hiiLMT(f10|O|1)2Q5jnSk|lh`C4[C^7I)a`o;YY1nF[JX:LW]m1ho(TG|dhhEoZm*]BMI`J)^5Eo1j[_8foUo25J5Zec*^o3^o)*SZlJ8:UPlBhmE|1Z_nN4E[8W?HRP[feR]]mZ)eEeLVej^a_lD2nQ8N[=N[eIi92IhWl*T`ClP0I|(EOichOV?|jlOU*ijM?;7QlW:X7ZLNihl:`(mMDj?ad?`XhO=Vmfn)7j[|4Fl;1n;DeUQQgQM?_T_HiDVALe3LM`E_cfE(VA;5;;CYh0XnNc[jEP4;=V:md6WNWBjAfO)M(DC(Z372;cAc_oR9g(0:0|_NjBXYHYSaefCfYl=:GC`e1*4WFMgJcb(iN7hS=m9lo;[:OAWmH:9l1dnFmf]c_g`=?e?Sh3;L=7=;chhBY|?RhS:=UoV4HGKo;cjN3?MI6AlXnS;?5_Vm7geiWFKd`?fn9G46CiSRO5fPeMTS)248Sj20LT`O]|nA6Z(Ka[5cR8P?fEM]NK(3fc]9U7aeW[jEN0|bF;lQXWm1e*Tbf`.mmf Parfois les x et x² ne seront pas écrits explicitement, il faudra alors modifier l'équation en suivant les règles de passage, pour les faire apparaître ⇢ Exemple

    Dans cette situation, vous devez faire apparaître à gauche un polynôme du 2nd degré :  ax² + bx + c = 0, ceci afin d'appliquer la méthode du discriminant. Voici les étapes à suivre :

    ① Faites basculer tous les termes à gauche afin de faire apparaître un zéro à droite

    ② Simplifiez et ordonnez les termes à gauche afin d'identifier clairement les coefficients a, b et c du polynôme du second degré

    ③ Appliquez la méthode du discriminant

    img
     

    Exemple   - 2 + x = x² - 6 - 2x
                 ⇔  - 2 + x - x² + 6 + 2x = 0
                 ⇔  - x² + 3x + 4 = 0
    On reconnaît un polynôme du 2nd degré avec a = -1, b = 3 et c = 4
    𝜟 = 25 > 0, donc il y a 2 solutions :   x1 = 4 et x2 = -1   [vérification : x1*x2= - 4 = c a MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf ]
    Ainsi S = { - 1; 4 }

    img

    Les Erreurs Fréquentes

    x + 1 = 2 x MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf - 1 x + 1*x = 2 - 1 (x + 1) x = 2 - 1*x On multiplie à droite et à gauche par x sans oublier de mettre des parenthèses
    ( 2 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf - 4 )x - 1 = 2 x - 1 = 2 2 4 MMF.7h^*3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi|b[ZJfU9::fdBSmjm2g19PPZYF[J53mP5l66a4;EMI)mGjnD|GjbbZkN[kGbMc_;E)UPFacnGaM?^dnBQ[5h?nn9ilW6gWoaSYe9NGfgcAGjO1^WOGh[Sk[2o0JMjC=LKib*`hB*:9l9YOY[UJ*0bW80)9e90Q=8kTk`S5nV_3oNcAAILGif^]Y|dcaOI7FJ`fFBcIAYlN2f[bJHl7WOk9kOjmAR8L;VLUo_SUnYKE_iKQg1Z65K;(kF|eJYC[iio_j_:lZoFYXM|gYdiL`Ne)QX)7XOikZElWCSMI7eh:OJ]aHKc`iMZikSamLWXNQQS?D8KAWS39N9`RCV(D8LAkS1)7XKI`cQmNDkO1iMSYci2GejR;boAUb?di*Qm)DiO3])GhoCEb)V[4O[ZW3kY_k^[8d)*]*`QQ(K[WCIDYYJETd5kX1f8oB:31^T=4AZl73=?5QM57R*)F2nk1XJ`g_di*5WD8ZH1GYI|2JIQY[H6V0IhPfTSOjH|6Wg|^8VYl|PBTWio`X9*8ZH1`3:AF1d_HgR]?:0ZC;eW`0*J)N:)|*jP6XBER1Z*m9:CPY=V:DR|*=80aMQ9GP9Yf1JNPXbkg:C]an*eD3`11J`PR|jP0JXm*0Ld?agCLjjR;Zj:6G5U^Nn40LeCd9R2m*jdI5Beh||d1gD:^UV8:MbdA]l=COmHAT*WS8PA_;Eh6PKCl?|=?`ZS|DnJMS1d;AYF9^8mH30;jFG;i:C[]4P`VKE29;^BA[`84HE_P)VlAQ7cQ8NPVS`RBh`KU7AAHWhIH]h8(H|OHgao6F9=UHdm(W`;TVmRaZ`EHhb__Damj5)f65iiGiJ7]gDO=TQa4fm4FgM1Pj:)V|D4K]YiH9TUjE9;19=InA?98RJZZfbRFG|WQQe(4_4](N^Ha7:*|1|6*_AVRh0nU;g1YMST4IX3dad*R=i*4W4?FEh^4:`A0DC?eQ^=*8)Y=BTZKF^|[fD;3MlHLA27^P=HU9_FIJlZ=23Kd`LJTK81TP)j6*gP9J4I:E_4c`IXC=XF|MH0bBh7:?hiAF)b7C2Pf?d0=bQ5]i3j|lW*Cd[C;^fM3Pg;]Y0d;C_DU^A^m^0n(TE8JHO:_MNXSXUF8=Bg^YNgDQNAWKn3]bZgbgZmmOl]CCjdJ^MAN*^a9:bleI3VQiNgAYC5F5IaJhg96_N|m^;Ni78eoZMHP4LbV?Ej]LX3(GGgBD`Sm`LX^2Ic:_YLN?WSk)]7[H(1WOcaHK8fZ8750dnN]*6O)VMEMO3[l67cM[L_ZVleSQg)bZORF=KH)[`^WnWKF:e9W)JaZ7K5KlnUm=TRQOChbB=(?_ej[0Z?9M_ag^_DP4h?j(bI[WQf3?0a`]eXBko^TmT39`^B2BU|ZJ;Z;MNXY[=1QOH[=CYaRnOgJgLHfJ5jLEm:lo;[dOMWoH:YX0jO[niGin_LJM;?P)2f^Dfg_i1c9fdn;0(|fb;;0gBgnGWelGJfBM5h*^mIWVHiOUnmOM_V*GCmEP^0Ph?T^M]ofSjj3JO]aSf6`KECJ*O8I|PVeOGYi?cm1nR0]2|.mmf x = 3 2 4 MMF.7h^*3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi|b[ZJfU9::fdBSmjm2g19PPZYF[J53mP5l66a4;EMI)mGjnD|GjbbZkN[kGbMc_;E)UPFacnGaM?^dnBQ[5h?nn9ilW6gWoaSYe9NGfgcAGjO1^WOGh[Sk[2o0JMjC=LKib*`hB*:9l9YOY[UJ*0bW80)9e90Q=8kTk`S5nV_3oNcAAILGif^]Y|dcaOI7FJ`fFBcIAYlN2f[bJHl7WOk9kOjmAR8L;VLUo_SUnYKE_iKQg1Z65K;(kF|eJYC[iio_j_:lZoFYXM|gYdiL`Ne)QX)7XOikZElWCSMI7eh:OJ]aHKc`iMZikSamLWXNQQS?D8KAWS39N9`RCV(D8LAkS1)7XKI`cQmNDkO1iMSYci2GejR;boAUb?di*Qm)DiO3])GhoCEb)V[4O[ZW3kY_k^[8d)*]*`QQ(K[WCIDYYJETd5kX1f8oB:31^T=4AZl73=?5QM57R*)F2nk1XJ`g_di*5WD8ZH1GYI|2JIQY[H6V0IhPfTSOjH|6Wg|^8VYl|PBTWio`X9*8ZH1`3:AF1d_HgR]?:0ZC;eW`0*J)N:)|*jP6XBER1Z*m9:CPY=V:DR|*=80aMQ9GP9Yf1JNPXbkg:C]an*eD3`11J`PR|jP0JXm*0Ld?agCLjjR;Zj:6G5U^Nn40LeCd9R2m*jdI5Beh||d1gD:^UV8:MbdA]l=COmHAT*WS8PA_;Eh6PKCl?|=?`ZS|DnJMS1d;AYF9^8mH30;jFG;i:C[]4P`VKE29;^BA[`84HE_P)VlAQ7cQ8NPVS`RBh`KU7AAHWhIH]h8(H|OHgao6F9=UHdm(W`;TVmRaZ`EHhb__Damj5)f65iiGiJ7]gDO=TQa4fm4FgM1Pj:)V|D4K]YiH9TUjE9;19=InA?98RJZZfbRFG|WQQe(4_4](N^Ha7:*|1|6*_AVRh0nU;g1YMST4IX3dad*R=i*4W4?FEh^4:`A0DC?eQ^=*8)Y=BTZKF^|[fD;3MlHLA27^P=HU9_FIJlZ=23Kd`LJTK81TP)j6*gP9J4I:E_4c`IXC=XF|MH0bBh7:?hiAF)b7C2Pf?d0=bQ5]i3j|lW*Cd[C;^fM3Pg;]Y0d;C_DU^A^m^0n(TE8JHO:_MNXSXUF8=Bg^YNgDQNAWKn3]bZgbgZmmOl]CCjdJ^MAN*^a9:bleI3VQiNgAYC5F5IaJhg96_N|m^;Ni78eoZMHP4LbV?Ej]LX3(GGgBD`Sm`LX^2Ic:_YLN?WSk)]7[H(1WOcaHK8fZ8750dnN]*6O)VMEMO3[l67cM[L_ZVleSQg)bZORF=KH)[`^WnWKF:e9W)JaZ7K5KlnUm=TRQOChbB=(?_ej[0Z?9M_ag^_DP4h?j(bI[WQf3?0a`]eXBko^TmT39`^B2BU|ZJ;Z;MNXY[=1QOH[=CYaRnOgJgLHfJ5jLEm:lo;[dOMWoH:YX0jO[niGin_LJM;?P)2f^Dfg_i1c9fdn;0(|fb;;0gBgnGWelGJfBM5h*^mIWVHiOUnmOM_V*GCmEP^0Ph?T^M]ofSjj3JO]aSf6`KECJ*O8I|PVeOGYi?cm1nR0]2|.mmf On fait d'abord basculer le 1 à gauche, puis on divise par 2 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf - 4
    -3x = 0 x = 3 x = 0 -3 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf = 0 C'est bien une multiplication qu'il y a entre le -3 et le x
    (x + 2) - 1 = 0 x + 2 = 0 -1 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf x + 2 = 1 Cette fois-ci ça n'est pas le cas, c'est un "-"
    (x + 3)(x - 1) = 0 (x + 3) = 0 x + 3 = 0 ou x - 1 = 0 Il y a autant de cas que de facteurs
    h(1 + 2x) = h 1 + 2x = 0 1 + 2x = 1 On divise à droite et à gauche par h
    x² = -4 x = -4 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf pas de solution car -4 < 0 Un terme au carrée est toujours positif
    x² = 9 x = 9 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf x = 9 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf ou x = - 9 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf Le passage à la racine carrée fait apparaître 2 cas
    x² + x + 1 (x + 6)x MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf = 0 x² + x + 1 = (x + 6)x x² + x + 1 = 0 On multiplie à droite et à gauche par
    (x + 6)x, et 0*(x + 6)x = 0

    .

    img

    Soyez Attentifs à ...

    ↬ Ne pas considérer que l’inconnue sera toujours noté x. Vous pourrez tomber sur des inconnus notés t, n ou p.

    ↬ N'oubliez pas de mettre des équivalents ⇔ entre chaque équation.

    ↬ N'oubliez pas de mettre des parenthèses si nécessaire : 3 + x = 4 x+2 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf ⇔ (3 + x)(x + 2) = 4

    ↬ A la fin de la résolution, concluez en écrivant S = { solution(s) de l'équation } ou S = ∅ s'il n'y a aucune solution.

    img

    Un peu de Théorie

    Règles de passage

    ① Binôme Addition-Soustraction

    img

    Si vous êtes dans la configuration suivante : - 5 + x = 8, réagencez alors le membre de gauche : x - 5 = 8, et vous pourrez appliquer simplement la règle décrite ci-dessus.

     

    ② Binôme Division-Multiplication

    img

    ↬ Lorsque vous multiplier à droite et à gauche par un facteur, mettez des parenthèses aux membres de droite et de gauche, ainsi qu'à votre facteur.

    Exemple   1 + x = 2 x-1 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf - 1       ⇢    ⚠ il serait faux d'écrire 1 + x( x - 1 ) = 2 - 1
                 Pour éviter cette erreur, on met des parenthèses au membre de gauche et de droite :
                 ⇔  ( 1 + x ) = ( 2 x-1 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf - 1 )
                 Puis on multiplie tout le membre de gauche et de droite par ( x - 1 ) :
                 ⇔  ( 1 + x ) ( x - 1 ) = ( 2 x-1 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf - 1 ) ( x - 1 )
                 ⇔  x² - 1 = 2 x-1 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf ( x - 1 ) - ( x - 1 )
                 On simplifie par ( x - 1 ) la fraction :
                 ⇔  x² - 1 = 2 - ( x - 1 )
                 Enfin on enlève les parenthèses, le "-" qui est devant va changer le signe des termes à l'intérieur :
                 ⇔  x² - 1 = 2 - x + 1
                 ⇔  x² + x - 4 = 0
    ⇢ Nous identifions alors une équation composée de x et de x², il faut donc appliquer la méthode du discriminant.

    ⚠ Les élèves bloquent souvent avec l'équation - x = 2, tout simplement elle est équivalente à x = - 2
     

    Equation Classique avec "un seul type de x"

    Le terme "un seul type de x" fait référence à une (et seulement une) configuration possible de x dans l'équation, en voici quelques unes :

    ↬ Configuration en x :             - 2 + x = 2x - 5

    ↬ Configuration en x² :           - 4x² = 4x² - 1

    ↬ Configuration en x MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf :        1 + 2 x MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf = 5 - x MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf

    ↬ Configuration en x 3 MMF.7h]X3`00QEMOLm|f3?l4n*inE)hD7l4o8]Dgae(cgf8iIj_]7_bRMU[VFf9gR[)UcNFkSb0Y2G8U=diRo00*a0l4HGVkb=n_e|]I|ESU5jlGfoTjVaF[MK*|Sgl]bo_MUlUMEClMm^G3i==^?oWGC3Vo_=PFRn8fRk9oW|_Sk[2o0Z_jV:dg=TRThTTBCiSEo38[|PPPWX2)9ib1E*)l0oI)XSGkoNif]|RSbh^gRndV:hY5OX(IK3KiK9U57ijZN[:YS|OMo]ij?adS5RnGlfYoO:joiMEoOP^[QV4e?e5c[aJMN_G`adeMEGng=SUT2n7DBCS`jVAhLadG^lOZJF9eToGQ|Mbg5Q??3loecW:So^VX?hba7Z4=8kcQ774haaa6Z((8MaPW3l?|HI`n?jDO=^MSYci2WinScloAib?dn*Qm?TjO3m?WhoC5b)V;4O[RU;kCOkMGQlO0_*`aa2[X[CHFb|_2bR03T1KXh:C*`8(Q*D)*=HUTd2T98;G01=Tf((AnmML8INI5C0)2c8T;YZ6VaP=(0h91]C]oMETdNVfi|JT8b3S4`oZDK)8BD*d0TPW7jP*I]iLR05N5JHP(V40S9c*`eP54Pk0BB*?BGW:LDM8T1HhEB1|P23])Bl0EFD9Ch;[;SI_nW[*6PRHPP1A4^3=XP6P?d099CdOePX^TfeMX*U`H6S|U*=8D9:IP*P392EDYZ9^T`:LP6dM(hJXeQViXn|L*8S8UA1BS[DGCD9Q6F:oXDBR9OM:dPg;GXV6U4]X32[?P*CI4C[])BaRABB|T_2]Y*X^*^)dKX;ZXBD8RhB689Xo4)(H=B[]M=;d(VSJ29_][g3mL1ReMIGE0RRi1l|fNV[BRa_eUT5dOQY*=KRm2;4)g=kh?6bBXRCJRlEg*X:BSIS21ZgHN6699^mABAVABoYBC7E?AECJEY;eCA*hVCNPBCCXV=ABTi8H1HkgI`Z0?NFm`2C9iV:A0M*L4[3NDV)hQ*l|5S3*R0)_INZ(Ag61ZCL:E]SGjJmU2AALV5)QHMP2;L]F6k5G53LSfm(6=B=h0CX6k6*fP9G4cT[N8WPfh(FUJA5X3);TL8)SWU1^CkH01*Nh7f479)TOGWdf6HE:Ze[Eg)ViH]XEddk93KDU^IWOf8i?5;^eHf7N?o9iX1HOjE_|:E]M5cTkO8ER5GFF2gXCoaTdn]4XKD*B;HnV`25KU=3nlPSEaFHaUYE^[MUKM|iZcJm?ceOQ9|*2?I33[mFYEA6aZka)K9_H?D;1=IUG^Ln7aci)_7eh70c[nhl)T=hP1ih4WCfo0YliIGAn27ci|G^ofIOg=HfeaG]fGalYSHo6jNW3Oa[`V]IZ?IKd[?cmD?6B;5;;SUh0`nNcUF9L1Lk;ROM290IdLd:TCGOUP6N1SQ;gAa_gJCnH0[(bLk930UR[[W[]4]C|KE(SP:C68MIkO[^eQi8OjdGhY;JZGHnQ?oh8YLadnGmf^C_g|JKZO0L4^|h^^Og?1[KCi|8b`K8^lR33Li]OEYn_I9T?S6dK?Rb`_l?_ZmN]f7[eLKZfO_WceD5bn_KeI_ol1f954k*.mmf :           5 + x 3 MMF.7h]X3`00QEMOLm|f3?l4n*inE)hD7l4o8]Dgae(cgf8iIj_]7_bRMU[VFf9gR[)UcNFkSb0Y2G8U=diRo00*a0l4HGVkb=n_e|]I|ESU5jlGfoTjVaF[MK*|Sgl]bo_MUlUMEClMm^G3i==^?oWGC3Vo_=PFRn8fRk9oW|_Sk[2o0Z_jV:dg=TRThTTBCiSEo38[|PPPWX2)9ib1E*)l0oI)XSGkoNif]|RSbh^gRndV:hY5OX(IK3KiK9U57ijZN[:YS|OMo]ij?adS5RnGlfYoO:joiMEoOP^[QV4e?e5c[aJMN_G`adeMEGng=SUT2n7DBCS`jVAhLadG^lOZJF9eToGQ|Mbg5Q??3loecW:So^VX?hba7Z4=8kcQ774haaa6Z((8MaPW3l?|HI`n?jDO=^MSYci2WinScloAib?dn*Qm?TjO3m?WhoC5b)V;4O[RU;kCOkMGQlO0_*`aa2[X[CHFb|_2bR03T1KXh:C*`8(Q*D)*=HUTd2T98;G01=Tf((AnmML8INI5C0)2c8T;YZ6VaP=(0h91]C]oMETdNVfi|JT8b3S4`oZDK)8BD*d0TPW7jP*I]iLR05N5JHP(V40S9c*`eP54Pk0BB*?BGW:LDM8T1HhEB1|P23])Bl0EFD9Ch;[;SI_nW[*6PRHPP1A4^3=XP6P?d099CdOePX^TfeMX*U`H6S|U*=8D9:IP*P392EDYZ9^T`:LP6dM(hJXeQViXn|L*8S8UA1BS[DGCD9Q6F:oXDBR9OM:dPg;GXV6U4]X32[?P*CI4C[])BaRABB|T_2]Y*X^*^)dKX;ZXBD8RhB689Xo4)(H=B[]M=;d(VSJ29_][g3mL1ReMIGE0RRi1l|fNV[BRa_eUT5dOQY*=KRm2;4)g=kh?6bBXRCJRlEg*X:BSIS21ZgHN6699^mABAVABoYBC7E?AECJEY;eCA*hVCNPBCCXV=ABTi8H1HkgI`Z0?NFm`2C9iV:A0M*L4[3NDV)hQ*l|5S3*R0)_INZ(Ag61ZCL:E]SGjJmU2AALV5)QHMP2;L]F6k5G53LSfm(6=B=h0CX6k6*fP9G4cT[N8WPfh(FUJA5X3);TL8)SWU1^CkH01*Nh7f479)TOGWdf6HE:Ze[Eg)ViH]XEddk93KDU^IWOf8i?5;^eHf7N?o9iX1HOjE_|:E]M5cTkO8ER5GFF2gXCoaTdn]4XKD*B;HnV`25KU=3nlPSEaFHaUYE^[MUKM|iZcJm?ceOQ9|*2?I33[mFYEA6aZka)K9_H?D;1=IUG^Ln7aci)_7eh70c[nhl)T=hP1ih4WCfo0YliIGAn27ci|G^ofIOg=HfeaG]fGalYSHo6jNW3Oa[`V]IZ?IKd[?cmD?6B;5;;SUh0`nNcUF9L1Lk;ROM290IdLd:TCGOUP6N1SQ;gAa_gJCnH0[(bLk930UR[[W[]4]C|KE(SP:C68MIkO[^eQi8OjdGhY;JZGHnQ?oh8YLadnGmf^C_g|JKZO0L4^|h^^Og?1[KCi|8b`K8^lR33Li]OEYn_I9T?S6dK?Rb`_l?_ZmN]f7[eLKZfO_WceD5bn_KeI_ol1f954k*.mmf = x 3 MMF.7h]X3`00QEMOLm|f3?l4n*inE)hD7l4o8]Dgae(cgf8iIj_]7_bRMU[VFf9gR[)UcNFkSb0Y2G8U=diRo00*a0l4HGVkb=n_e|]I|ESU5jlGfoTjVaF[MK*|Sgl]bo_MUlUMEClMm^G3i==^?oWGC3Vo_=PFRn8fRk9oW|_Sk[2o0Z_jV:dg=TRThTTBCiSEo38[|PPPWX2)9ib1E*)l0oI)XSGkoNif]|RSbh^gRndV:hY5OX(IK3KiK9U57ijZN[:YS|OMo]ij?adS5RnGlfYoO:joiMEoOP^[QV4e?e5c[aJMN_G`adeMEGng=SUT2n7DBCS`jVAhLadG^lOZJF9eToGQ|Mbg5Q??3loecW:So^VX?hba7Z4=8kcQ774haaa6Z((8MaPW3l?|HI`n?jDO=^MSYci2WinScloAib?dn*Qm?TjO3m?WhoC5b)V;4O[RU;kCOkMGQlO0_*`aa2[X[CHFb|_2bR03T1KXh:C*`8(Q*D)*=HUTd2T98;G01=Tf((AnmML8INI5C0)2c8T;YZ6VaP=(0h91]C]oMETdNVfi|JT8b3S4`oZDK)8BD*d0TPW7jP*I]iLR05N5JHP(V40S9c*`eP54Pk0BB*?BGW:LDM8T1HhEB1|P23])Bl0EFD9Ch;[;SI_nW[*6PRHPP1A4^3=XP6P?d099CdOePX^TfeMX*U`H6S|U*=8D9:IP*P392EDYZ9^T`:LP6dM(hJXeQViXn|L*8S8UA1BS[DGCD9Q6F:oXDBR9OM:dPg;GXV6U4]X32[?P*CI4C[])BaRABB|T_2]Y*X^*^)dKX;ZXBD8RhB689Xo4)(H=B[]M=;d(VSJ29_][g3mL1ReMIGE0RRi1l|fNV[BRa_eUT5dOQY*=KRm2;4)g=kh?6bBXRCJRlEg*X:BSIS21ZgHN6699^mABAVABoYBC7E?AECJEY;eCA*hVCNPBCCXV=ABTi8H1HkgI`Z0?NFm`2C9iV:A0M*L4[3NDV)hQ*l|5S3*R0)_INZ(Ag61ZCL:E]SGjJmU2AALV5)QHMP2;L]F6k5G53LSfm(6=B=h0CX6k6*fP9G4cT[N8WPfh(FUJA5X3);TL8)SWU1^CkH01*Nh7f479)TOGWdf6HE:Ze[Eg)ViH]XEddk93KDU^IWOf8i?5;^eHf7N?o9iX1HOjE_|:E]M5cTkO8ER5GFF2gXCoaTdn]4XKD*B;HnV`25KU=3nlPSEaFHaUYE^[MUKM|iZcJm?ceOQ9|*2?I33[mFYEA6aZka)K9_H?D;1=IUG^Ln7aci)_7eh70c[nhl)T=hP1ih4WCfo0YliIGAn27ci|G^ofIOg=HfeaG]fGalYSHo6jNW3Oa[`V]IZ?IKd[?cmD?6B;5;;SUh0`nNcUF9L1Lk;ROM290IdLd:TCGOUP6N1SQ;gAa_gJCnH0[(bLk930UR[[W[]4]C|KE(SP:C68MIkO[^eQi8OjdGhY;JZGHnQ?oh8YLadnGmf^C_g|JKZO0L4^|h^^Og?1[KCi|8b`K8^lR33Li]OEYn_I9T?S6dK?Rb`_l?_ZmN]f7[eLKZfO_WceD5bn_KeI_ol1f954k*.mmf

    etc...

    MMF.7h_H3`00QEMOLn963?l4n*hlVQV7FNdOko[N2?FUC0=T`9O[0bo^eDfI9W0UG7]gVGcgB^^e;G(f3*WACm9ZmM=ZQMW)UnmGjlDdWjnFEjmGfmTjVnJ[MK*XCWl^R|OMYm5mNG`ik8^WdLOMO_B?VdPi_][Vlo`^Rk:o_aBWgF5o3JQjb=HK31:IN9C48h6JWjIi5P748obE0U0;lYfakaBiIkoNgdgWbfQlmGJegFAi?UoNDP:KcG:jb:8?;nEa]2U?Ymgn4KeOCY685h]I^Cmm)GiKU_mF)j0Jn]GbC2d[]F[EZjOOKhmUnEMSdgff4(jLQH=:WOA_K^=lmebnS50gFQnNRgeSLO7|l)Fh*fkL?agdQb7F0kAQP3ML8PjGV((0MASP3|?TXIlm3=)GioC3iW;Xe0OXbd_diBGjLX2n7:0_QnW;O_YbV;hJ)7de*5nMdoOjkgQeI0bbTR66f0*mJV=U:UVQ33X0SL069d(66*`96H9|FBA7CTT0:*8GI6aPR:_EWb)BABEB6Q1TbE`X3C=a5J0d81Q(|o=WWdF]]lQ=C5A0cR(IeZM|4in8Z*6`C2AE9lRd_EH1n2Y(*VBP16XihH6Y3Z1ZA9E8JY1fTY)2TfHYB:Y0FP?5f4UN0VWH4Yj2]6e^dWGgi3E*?045[23:Wd4=E7)023*o7M(9[Y9fGfDILNEhk9*1cE?*U88;0KATE;GRKYZ3:PEM)e8:ehdaM4?M?hhAdBTSHPA_;Ij6XCC2N|)?`VSZTkXMS;lF=B^Cl1h`U8D(|V=bfWIJ8YS(FR6AKDTCGXC4Kel3ddI=4QJ93T7ENBC)(jiAf^iRnFF`_14|fmoBo^4bF)d[J`(bO0VA[oNd[1D]kJn3k?|`Y)aXNaER)KjmZoZ`AXZKN2)jZP]ZU;CD72E`gL`3abaYVeXZV(c:WdZfHj[JbZJJ]GMZf(6T2EmRFLNTSX)DgC0*XS=K17BQk0`^aBJ?d1bHmX10M8JB|1gTN;U0|4H441eKIcB27db=BOWB=|KZFSK*l8D91cKF;J2RG3LQ)eGa0k8iOO0SD]I0L^1_APehBOb(U0gRI`=nC;X6|MH0bBh7:?hiiLMT(f10|O|1)2Q5jnSk|lh`C4[C^7I)a`o;YY1nF[JX:LW]m1ho(TG|dhhEoZm*]BMI`J)^5Eo1j[_8foUo25J5Zec*^o3^o)*SZlJ8:UPlBhmE|1Z_nN4E[8W?HRP[feR]]mZ)eEeLVej^a_lD2nQ8N[=N[eIi92IhWl*T`ClP0I|(EOichOV?|jlOU*ijM?;7QlW:X7ZLNihl:`(mMDj?ad?`XhO=Vmfn)7j[|4Fl;1n;DeUQQgQM?_T_HiDVALe3LM`E_cfE(VA;5;;CYh0XnNc[jEP4;=V:md6WNWBjAfO)M(DC(Z372;cAc_oR9g(0:0|_NjBXYHYSaefCfYl=:GC`e1*4WFMgJcb(iN7hS=m9lo;[:OAWmH:9l1dnFmf]c_g`=?e?Sh3;L=7=;chhBY|?RhS:=UoV4HGKo;cjN3?MI6AlXnS;?5_Vm7geiWFKd`?fn9G46CiSRO5fPeMTS)248Sj20LT`O]|nA6Z(Ka[5cR8P?fEM]NK(3fc]9U7aeW[jEN0|bF;lQXWm1e*Tbf`.mmf    x = 2 x MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf - 1     n'est pas une configuration en x car il y a à la fois du x et du 1 x MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf . Arrangez-vous alors pour ne plus avoir de x au dénominateur, en multipliant tout le membre de droite et de gauche par x.
     

    Pour résoudre ce type d'équation, vous devez isoler à gauche votre terme en x en suivant rigoureusement les règles de passage. Puis, vous devez effectuer les étapes nécessaires pour obtenir un x au numérateur et "vierge" de toutes racines carrées, puissances, etc...

     

    Equation Polynomiale avec du x et du x²

    Contrairement au paragraphe précédent, cette partie étudie les équations composées à la fois de x et de x².

    MMF.7h_H3`00QEMOLn963?l4n*hlVQV7FNdOko[N2?FUC0=T`9O[0bo^eDfI9W0UG7]gVGcgB^^e;G(f3*WACm9ZmM=ZQMW)UnmGjlDdWjnFEjmGfmTjVnJ[MK*XCWl^R|OMYm5mNG`ik8^WdLOMO_B?VdPi_][Vlo`^Rk:o_aBWgF5o3JQjb=HK31:IN9C48h6JWjIi5P748obE0U0;lYfakaBiIkoNgdgWbfQlmGJegFAi?UoNDP:KcG:jb:8?;nEa]2U?Ymgn4KeOCY685h]I^Cmm)GiKU_mF)j0Jn]GbC2d[]F[EZjOOKhmUnEMSdgff4(jLQH=:WOA_K^=lmebnS50gFQnNRgeSLO7|l)Fh*fkL?agdQb7F0kAQP3ML8PjGV((0MASP3|?TXIlm3=)GioC3iW;Xe0OXbd_diBGjLX2n7:0_QnW;O_YbV;hJ)7de*5nMdoOjkgQeI0bbTR66f0*mJV=U:UVQ33X0SL069d(66*`96H9|FBA7CTT0:*8GI6aPR:_EWb)BABEB6Q1TbE`X3C=a5J0d81Q(|o=WWdF]]lQ=C5A0cR(IeZM|4in8Z*6`C2AE9lRd_EH1n2Y(*VBP16XihH6Y3Z1ZA9E8JY1fTY)2TfHYB:Y0FP?5f4UN0VWH4Yj2]6e^dWGgi3E*?045[23:Wd4=E7)023*o7M(9[Y9fGfDILNEhk9*1cE?*U88;0KATE;GRKYZ3:PEM)e8:ehdaM4?M?hhAdBTSHPA_;Ij6XCC2N|)?`VSZTkXMS;lF=B^Cl1h`U8D(|V=bfWIJ8YS(FR6AKDTCGXC4Kel3ddI=4QJ93T7ENBC)(jiAf^iRnFF`_14|fmoBo^4bF)d[J`(bO0VA[oNd[1D]kJn3k?|`Y)aXNaER)KjmZoZ`AXZKN2)jZP]ZU;CD72E`gL`3abaYVeXZV(c:WdZfHj[JbZJJ]GMZf(6T2EmRFLNTSX)DgC0*XS=K17BQk0`^aBJ?d1bHmX10M8JB|1gTN;U0|4H441eKIcB27db=BOWB=|KZFSK*l8D91cKF;J2RG3LQ)eGa0k8iOO0SD]I0L^1_APehBOb(U0gRI`=nC;X6|MH0bBh7:?hiiLMT(f10|O|1)2Q5jnSk|lh`C4[C^7I)a`o;YY1nF[JX:LW]m1ho(TG|dhhEoZm*]BMI`J)^5Eo1j[_8foUo25J5Zec*^o3^o)*SZlJ8:UPlBhmE|1Z_nN4E[8W?HRP[feR]]mZ)eEeLVej^a_lD2nQ8N[=N[eIi92IhWl*T`ClP0I|(EOichOV?|jlOU*ijM?;7QlW:X7ZLNihl:`(mMDj?ad?`XhO=Vmfn)7j[|4Fl;1n;DeUQQgQM?_T_HiDVALe3LM`E_cfE(VA;5;;CYh0XnNc[jEP4;=V:md6WNWBjAfO)M(DC(Z372;cAc_oR9g(0:0|_NjBXYHYSaefCfYl=:GC`e1*4WFMgJcb(iN7hS=m9lo;[:OAWmH:9l1dnFmf]c_g`=?e?Sh3;L=7=;chhBY|?RhS:=UoV4HGKo;cjN3?MI6AlXnS;?5_Vm7geiWFKd`?fn9G46CiSRO5fPeMTS)248Sj20LT`O]|nA6Z(Ka[5cR8P?fEM]NK(3fc]9U7aeW[jEN0|bF;lQXWm1e*Tbf`.mmf Parfois les x et x² ne seront pas écrits explicitement, il faudra alors modifier l'équation en suivant les règles de passage, pour les faire apparaître ⇢ Exemple

    Dans cette situation, vous devez faire apparaître à gauche un polynôme du 2nd degré :  ax² + bx + c = 0, ceci afin d'appliquer la méthode du discriminant. Voici les étapes à suivre :

    ① Faites basculer tous les termes à gauche afin de faire apparaître un zéro à droite

    ② Simplifiez et ordonnez les termes à gauche afin d'identifier clairement les coefficients a, b et c du polynôme du second degré

    ③ Appliquez la méthode du discriminant

    img
     

    Exemple   - 2 + x = x² - 6 - 2x
                 ⇔  - 2 + x - x² + 6 + 2x = 0
                 ⇔  - x² + 3x + 4 = 0
    On reconnaît un polynôme du 2nd degré avec a = -1, b = 3 et c = 4
    𝜟 = 25 > 0, donc il y a 2 solutions :   x1 = 4 et x2 = -1   [vérification : x1*x2= - 4 = c a MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf ]
    Ainsi S = { - 1; 4 }

    img

    Les Erreurs Fréquentes

    x + 1 = 2 x MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf - 1 x + 1*x = 2 - 1 (x + 1) x = 2 - 1*x On multiplie à droite et à gauche par x sans oublier de mettre des parenthèses
    ( 2 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf - 4 )x - 1 = 2 x - 1 = 2 2 4 MMF.7h^*3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi|b[ZJfU9::fdBSmjm2g19PPZYF[J53mP5l66a4;EMI)mGjnD|GjbbZkN[kGbMc_;E)UPFacnGaM?^dnBQ[5h?nn9ilW6gWoaSYe9NGfgcAGjO1^WOGh[Sk[2o0JMjC=LKib*`hB*:9l9YOY[UJ*0bW80)9e90Q=8kTk`S5nV_3oNcAAILGif^]Y|dcaOI7FJ`fFBcIAYlN2f[bJHl7WOk9kOjmAR8L;VLUo_SUnYKE_iKQg1Z65K;(kF|eJYC[iio_j_:lZoFYXM|gYdiL`Ne)QX)7XOikZElWCSMI7eh:OJ]aHKc`iMZikSamLWXNQQS?D8KAWS39N9`RCV(D8LAkS1)7XKI`cQmNDkO1iMSYci2GejR;boAUb?di*Qm)DiO3])GhoCEb)V[4O[ZW3kY_k^[8d)*]*`QQ(K[WCIDYYJETd5kX1f8oB:31^T=4AZl73=?5QM57R*)F2nk1XJ`g_di*5WD8ZH1GYI|2JIQY[H6V0IhPfTSOjH|6Wg|^8VYl|PBTWio`X9*8ZH1`3:AF1d_HgR]?:0ZC;eW`0*J)N:)|*jP6XBER1Z*m9:CPY=V:DR|*=80aMQ9GP9Yf1JNPXbkg:C]an*eD3`11J`PR|jP0JXm*0Ld?agCLjjR;Zj:6G5U^Nn40LeCd9R2m*jdI5Beh||d1gD:^UV8:MbdA]l=COmHAT*WS8PA_;Eh6PKCl?|=?`ZS|DnJMS1d;AYF9^8mH30;jFG;i:C[]4P`VKE29;^BA[`84HE_P)VlAQ7cQ8NPVS`RBh`KU7AAHWhIH]h8(H|OHgao6F9=UHdm(W`;TVmRaZ`EHhb__Damj5)f65iiGiJ7]gDO=TQa4fm4FgM1Pj:)V|D4K]YiH9TUjE9;19=InA?98RJZZfbRFG|WQQe(4_4](N^Ha7:*|1|6*_AVRh0nU;g1YMST4IX3dad*R=i*4W4?FEh^4:`A0DC?eQ^=*8)Y=BTZKF^|[fD;3MlHLA27^P=HU9_FIJlZ=23Kd`LJTK81TP)j6*gP9J4I:E_4c`IXC=XF|MH0bBh7:?hiAF)b7C2Pf?d0=bQ5]i3j|lW*Cd[C;^fM3Pg;]Y0d;C_DU^A^m^0n(TE8JHO:_MNXSXUF8=Bg^YNgDQNAWKn3]bZgbgZmmOl]CCjdJ^MAN*^a9:bleI3VQiNgAYC5F5IaJhg96_N|m^;Ni78eoZMHP4LbV?Ej]LX3(GGgBD`Sm`LX^2Ic:_YLN?WSk)]7[H(1WOcaHK8fZ8750dnN]*6O)VMEMO3[l67cM[L_ZVleSQg)bZORF=KH)[`^WnWKF:e9W)JaZ7K5KlnUm=TRQOChbB=(?_ej[0Z?9M_ag^_DP4h?j(bI[WQf3?0a`]eXBko^TmT39`^B2BU|ZJ;Z;MNXY[=1QOH[=CYaRnOgJgLHfJ5jLEm:lo;[dOMWoH:YX0jO[niGin_LJM;?P)2f^Dfg_i1c9fdn;0(|fb;;0gBgnGWelGJfBM5h*^mIWVHiOUnmOM_V*GCmEP^0Ph?T^M]ofSjj3JO]aSf6`KECJ*O8I|PVeOGYi?cm1nR0]2|.mmf x = 3 2 4 MMF.7h^*3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi|b[ZJfU9::fdBSmjm2g19PPZYF[J53mP5l66a4;EMI)mGjnD|GjbbZkN[kGbMc_;E)UPFacnGaM?^dnBQ[5h?nn9ilW6gWoaSYe9NGfgcAGjO1^WOGh[Sk[2o0JMjC=LKib*`hB*:9l9YOY[UJ*0bW80)9e90Q=8kTk`S5nV_3oNcAAILGif^]Y|dcaOI7FJ`fFBcIAYlN2f[bJHl7WOk9kOjmAR8L;VLUo_SUnYKE_iKQg1Z65K;(kF|eJYC[iio_j_:lZoFYXM|gYdiL`Ne)QX)7XOikZElWCSMI7eh:OJ]aHKc`iMZikSamLWXNQQS?D8KAWS39N9`RCV(D8LAkS1)7XKI`cQmNDkO1iMSYci2GejR;boAUb?di*Qm)DiO3])GhoCEb)V[4O[ZW3kY_k^[8d)*]*`QQ(K[WCIDYYJETd5kX1f8oB:31^T=4AZl73=?5QM57R*)F2nk1XJ`g_di*5WD8ZH1GYI|2JIQY[H6V0IhPfTSOjH|6Wg|^8VYl|PBTWio`X9*8ZH1`3:AF1d_HgR]?:0ZC;eW`0*J)N:)|*jP6XBER1Z*m9:CPY=V:DR|*=80aMQ9GP9Yf1JNPXbkg:C]an*eD3`11J`PR|jP0JXm*0Ld?agCLjjR;Zj:6G5U^Nn40LeCd9R2m*jdI5Beh||d1gD:^UV8:MbdA]l=COmHAT*WS8PA_;Eh6PKCl?|=?`ZS|DnJMS1d;AYF9^8mH30;jFG;i:C[]4P`VKE29;^BA[`84HE_P)VlAQ7cQ8NPVS`RBh`KU7AAHWhIH]h8(H|OHgao6F9=UHdm(W`;TVmRaZ`EHhb__Damj5)f65iiGiJ7]gDO=TQa4fm4FgM1Pj:)V|D4K]YiH9TUjE9;19=InA?98RJZZfbRFG|WQQe(4_4](N^Ha7:*|1|6*_AVRh0nU;g1YMST4IX3dad*R=i*4W4?FEh^4:`A0DC?eQ^=*8)Y=BTZKF^|[fD;3MlHLA27^P=HU9_FIJlZ=23Kd`LJTK81TP)j6*gP9J4I:E_4c`IXC=XF|MH0bBh7:?hiAF)b7C2Pf?d0=bQ5]i3j|lW*Cd[C;^fM3Pg;]Y0d;C_DU^A^m^0n(TE8JHO:_MNXSXUF8=Bg^YNgDQNAWKn3]bZgbgZmmOl]CCjdJ^MAN*^a9:bleI3VQiNgAYC5F5IaJhg96_N|m^;Ni78eoZMHP4LbV?Ej]LX3(GGgBD`Sm`LX^2Ic:_YLN?WSk)]7[H(1WOcaHK8fZ8750dnN]*6O)VMEMO3[l67cM[L_ZVleSQg)bZORF=KH)[`^WnWKF:e9W)JaZ7K5KlnUm=TRQOChbB=(?_ej[0Z?9M_ag^_DP4h?j(bI[WQf3?0a`]eXBko^TmT39`^B2BU|ZJ;Z;MNXY[=1QOH[=CYaRnOgJgLHfJ5jLEm:lo;[dOMWoH:YX0jO[niGin_LJM;?P)2f^Dfg_i1c9fdn;0(|fb;;0gBgnGWelGJfBM5h*^mIWVHiOUnmOM_V*GCmEP^0Ph?T^M]ofSjj3JO]aSf6`KECJ*O8I|PVeOGYi?cm1nR0]2|.mmf On fait d'abord basculer le 1 à gauche, puis on divise par 2 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf - 4
    -3x = 0 x = 3 x = 0 -3 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf = 0 C'est bien une multiplication qu'il y a entre le -3 et le x
    (x + 2) - 1 = 0 x + 2 = 0 -1 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf x + 2 = 1 Cette fois-ci ça n'est pas le cas, c'est un "-"
    (x + 3)(x - 1) = 0 (x + 3) = 0 x + 3 = 0 ou x - 1 = 0 Il y a autant de cas que de facteurs
    h(1 + 2x) = h 1 + 2x = 0 1 + 2x = 1 On divise à droite et à gauche par h
    x² = -4 x = -4 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf pas de solution car -4 < 0 Un terme au carrée est toujours positif
    x² = 9 x = 9 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf x = 9 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf ou x = - 9 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf Le passage à la racine carrée fait apparaître 2 cas
    x² + x + 1 (x + 6)x MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf = 0 x² + x + 1 = (x + 6)x x² + x + 1 = 0 On multiplie à droite et à gauche par
    (x + 6)x, et 0*(x + 6)x = 0

    .

    img

    Soyez Attentifs à ...

    ↬ Ne pas considérer que l’inconnue sera toujours noté x. Vous pourrez tomber sur des inconnus notés t, n ou p.

    ↬ N'oubliez pas de mettre des équivalents ⇔ entre chaque équation.

    ↬ N'oubliez pas de mettre des parenthèses si nécessaire : 3 + x = 4 x+2 MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf ⇔ (3 + x)(x + 2) = 4

    ↬ A la fin de la résolution, concluez en écrivant S = { solution(s) de l'équation } ou S = ∅ s'il n'y a aucune solution.

    img