L'Essentiel à Retenir

    img

    Méthodologie : Raisonner par étapes

    img

    Les Erreurs Fréquentes

    f(x) = 3x et g(x) = x² - 4 f(x) - g(x) = 3x - x² - 4 f(x) - g(x) = 3x - (x² - 4) N'oubliez pas de mettre des parenthèses
    2(x - 1)² - 4 = 0 (x - 1) = 2 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf (x - 1) = 2 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf ou - 2 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf Le passage à la racine carrée fait apparaître 2 cass
    x² + x + 1 (x + 6)x MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf = 0 x² + x + 1 = (x + 6)x x² + x + 1 = 0 On multiplie à droite et à gauche par
    (x + 6)x, et 0*(x + 6)x = 0
    f(x) = - x² + 3x f(2) = - 2² + 6 = 4 + 6 f(2) = - (2)² + 6 = - 4 + 6 - x² = - (x)² est négatif, ce qui est différent de (-x)² = x². Il faut faire attention à la position des parenthèses

    .

    img

    Soyez Attentifs à ...

    ↬ Penser à mettre les « 0 » dans le tableau de signe, sauf pour les valeurs interdites où il faut mettre une double barre.

    ↬ Attention aux contraintes sur x, notamment dans les exercices types économie ("la production est limitée à 50 pièces") ou géométrie. Surtout lorsque vous faites des tableaux de signe ou de variation.

    img

    Exercices

    Plus d'Exercices avec des Corrections
    Cliquez Ici

    Les Erreurs Fréquentes

    f(x) = 3x et g(x) = x² - 4 f(x) - g(x) = 3x - x² - 4 f(x) - g(x) = 3x - (x² - 4) N'oubliez pas de mettre des parenthèses
    2(x - 1)² - 4 = 0 (x - 1) = 2 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf (x - 1) = 2 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf ou - 2 MMF.7h]Z3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDh_bB8cCPbi(b[ZJfU9:bfdBSmnm`799PPZYF9J=3l1RlF6a4;EMI)mGjnD|GjbbRmN;kGbMc_;E)UPFaknFaL?^lnB^[9h?nn9alW6gWoa[Ye9NGVccAGjK1^To;lEaMmQO0J[^doD6P`*VW4CQA:3VUeVN1R32RMCh5X1Z|)o0_=(J[NW_MkNcAAILG[aMK3MYWRnb6lYP|lUVbcChl5aFTdei?)kf3nSmO0a4^5c)bogaYOZFUOoEFj0JQ]GbA2e[]N[DZlLoKZZbo;^ejB6K3fM)`T6]SXHgSl=lme*nCe0gFAnNRWe[|N7ll5;]T1_gCdKmHHce26dHh*gWR((iiS127DJh`cQi66H?hoCU:Gfo^A`kmA7jlQamNHjn7:4_AnS;LOYbV;hLYjm6CUn=d5NWm9gn)ehM6H:|I*PQ=5j?fU2IFUHXPoI08hRmTb63m8J835j)FBA;CY472*;[IFaP2)_EG`:BABeB6^1UbE`X3C)e=J0d`1](^o(GUdFSSi6KV2Z?[4?B[doH9RhAd`1PVDRZSYMYNjdlL5FHn|Q02CAba0=C7D0eR2XA=B3Y9BL59leBT5B1Y06:|I)l1=:`9C`56GNiBM_OTmM0l**D|88XM`H=D)d18]3lM4`_^8ZjOEG(R2_;HbL(J9j2YQB|3j0UXjXEMm(Le2WXaY5B^6Z=_Q^Jo[6(R4hH4B=hJo4d3:GQea]n54ICWcC]H=beJ5RIR?N0XBbTUbfCTjkC8|5TePZAk4XJlB94K_|6V2iZ5;58M0RZbB)bSW63TVjGV5n6V3M2c?J?JGmo6F;]:Q]kI?PB8]o|6K=FS6UokFGGQciUBm|[7l_bkFgMQ`eBg(*KdMIMd:2XXfHYPJ]f7UQVBK[D4|5TE_i4|QdCeEDfdJbm4l()9XWhTYQeC68iB=P=0b5j|dE07l[Nh59|lPS=PNT)24A_:8VhQb`_5`SFR02RIn^=AW23ZCDYEm[FF5o;5QZn()8P3WD7Z2QGKLQNEMb0K4lOg8RD3I0L^9_A05hB=b=URoSIP1^C]TF|=D2bb`6:Odji(MT)653|OP0)B]4i^_i|(_BCd[B^_M=a`k8]Y9^F7FY;LS)k`hm(4KZd*hGoJeC_BEI`Z6o5UkNj;W9foQnlEN4ZjoGFokE^lY5EHdCU;HjU`lYKSM?ll?;Fb6DaUUGLFV=WSG]FNgI]L[hJ?bTFd94(I[eN[O90C?4nRFV4Kb01V`aEkW?QjLnC[ane3PIdl|N7bMZP1Y`7WSa[0ceecZ[Zh?gXHO=j]bnZKcF)4FOU*g4|Jf`A[l]7mff|eRBX^BnZGO7Y|I*nFj:*7SmkA(VWGhmEhK5T:mikWA[*j*6M)M4ESlR07R?`AU_gRio(7Z0|W)b*XYHZZYjk9[Dk6e9XkjTY23[?KmMh6=VQN|8_YGWimNSk|gk1E;P)Wjm^EjMnN9[^Id30IKSXnSLG7:G=QfE0IE]TND3Q=[n^?Uk?=RTIgbQjUZMIC]mG[eng)AECG;jB?0odiM_f7_gNg]3cOeEd0IX.mmf Le passage à la racine carrée fait apparaître 2 cass
    x² + x + 1 (x + 6)x MMF.7h]`3`00QEO=L]]637h2_h))m0b]FN`?^La=EQUGDd_bB8cCPbm|b[ZJfU9::fdBSmnm`)jB11EB]F`;7k0;h(=R8NYQ|GZogRaWaF:m^WRmN9Q_lUVagTC;l_SW|WcLOI[LEOG;HElnCCk^mY=ok5C:bh^7HU7LiU7nmiOb^3_|[`1EmoUVRdhR4dnBN29*lm)|b2)0N6;SRAB0FPW_Y7ZWbISoNWLkFjbRbh^gRhM]GQB;e*dU|=f^I||ln_1BeI=]MCc^mXnhn^DHRGRiW5OkhiOjfj[jedM0=*b[iHUJN[GZe)^WgfoZZ_Z[]NTQFg1WC]b1EbO3`M)hf3eG;a?DCCJ7ig;OFV`l?gbYMlR=[lm6el(Hja7J((8KcQ67LlaQQ3Z(L8MalS3(7|KYbe?j8KPL)oDAn_8LOGV)_QbQ;dOXbg7jLYRn7:N_ATiOSM1GYoBMoS]N7AV3m3;449^PAff|S9LEbZ03d0SB|(R***I3*XHPYlbCYDE901T26fA|H8Smk|lAbL:;U0H4FK8UU8JIFPlX3*P6ddKnk;9Xm2Ub4e(ET7E8Q_dI2n8B(*d0UXVTjPBI`V|EP:_2=7P6BZ2A4njHjP2Z*EB9Y05I;cTY)6VFPZ*:I0e*S9gT9I26KN4Yb;C;CMYnC5h3aA=*`0ZRg1Td*;D7R43cdc4mib[YhZZD4ENFnlhHd3`5CBWHh41;AUD[_Tach5?*cD9:hJXeQViXn|Lb8SYSA8cP[LGC(9A6f6ohDAQ=OM:dPg7GXV5U4]h3Q[:**KI(c[Y)B`BCFB|T|R]Y`X^*^?0=(9gG966Nj11DTdMR7N(6IEfDU5n6U3M2b^:W53mLQUBkbZH16Kj5b3LaDmJ::LGG*GIm65:f55h5GiJ7]kh?6jBhRCNRmEg*X:BSIRV1ZgHNF6K9^]*b`FAFoTbbR9WZ:Y]Ye]jIH*NC9Ga;bSXV|aaTk8J14;gI8Z0?IFm`:CIiQ)K0M0L4XSNDA=Y3UYL;16]40=6cmDHS^(7DVY*[KF_dek:5QVm()4QSg*4ZbUG[|ULE=b3Kd`Lg8VD390O^ISB0UlC=B=TROSKPaZA]4F|=T)abP):ODfi(]P(65;|OP8=BM0]MOcHIQTUYfZFmdg73|RfTViHMJT]b(k_3Sd`A^kASQNlNnIQT1HOjEW`5Zn|RInO_4:`:MmVP]n6oMI)?[1XmZV1a;1eF`FZLiXMG|2H^Rk6|d]JJ)V_J|mZcNk?ceOROHP4MbF3FVoFjR(*Dki)H9_P7962CXLYm;ScoLO;e`n]P*2MoO9Sd1SF`N)39da_XZG=FehN`SQhf[gOk|_kVLHYhECfFalYSRgQC?KT_HejCXNJn[7OUKdnE3=TBQOch:B1:?_mj[(^09M_a?^SDP4h?j(b9[Wa21_*HPCOJ^UolI0h0IN5TQaBeE5WgUV]B^k(QQ*h[=CW1aO?K3Ak6jU0ohgOBX_Yj3?gYGc0E[|?Wjm_ejCXlCOLc8)0fg7CmRg))d_K3(Z:b;EI5A)jf?jloG|nf)AWOb?^Zb5L5OEnmOWdXX^CbUHAiY2kO_21A^(MW^L^g=mc`7k86FS`.mmf = 0 x² + x + 1 = (x + 6)x x² + x + 1 = 0 On multiplie à droite et à gauche par
    (x + 6)x, et 0*(x + 6)x = 0
    f(x) = - x² + 3x f(2) = - 2² + 6 = 4 + 6 f(2) = - (2)² + 6 = - 4 + 6 - x² = - (x)² est négatif, ce qui est différent de (-x)² = x². Il faut faire attention à la position des parenthèses

    .

    img